

AVR32107: Using TWI as a Master on the AVR32

Features
- Compatible with Philips' I2C protocol
- Master transmitter mode
- Master receiver mode
- 7-bit slave address – up to 127 devices on the same bus
- Normal (100kbps) and Fast (400kbps) operation
- Interrupt driven communication
- Sequential read and write operation
- Compatible with Standard Two-Wire Serial Memory
- Currently only master mode is supported

1 Introduction
The AVR®32 microcontroller communicate as the master on a TWI bus (Philips’
I2C compatible Two-Wire Interface). Up to 127 TWI devices can be connected to
each bus. The bus is half-duplex, and the current master device initiates transfers
both ways.

Figure 1.1: Conceptual schematics

MASTER SLAVE #1
CLOCK

DATA

SLAVE #2

SLAVE #127

32-bit
Microcontrollers

Application Note

Rev. 32011A-AVR-04/06

2 AVR32107
32011A-AVR-04/06

2 Functional description

2.1 Electrical interconnection
The TWI bus consists of two lines, one for data and one for the clock signal (and
possibly one for ground). Both bus lines are connected to the positive supply voltage
through pull-up resistors. When a device wants to output a logical 0, it drives the bus
line low and for logical 1, the output is tri-stated. In this way the device relies on the
pull-up resistor to pull the line high. This technique is often referred to as wired AND.
This is described in further detail in chapter 2.2.

Figure 2.1: Electrical schematics

MASTER
TWCK

TWD

SLAVE #1 SLAVE #2

VDD

2.2 Wired AND
Both lines in the TWI bus are connected to the power source with pull-up resistors. As
a result, both lines on the bus will go high, if no device is driving the bus. The wired-
AND is a result of that the devices currently transmitting on the bus releases it when
logical 1 is to be transmitted, and only drives the bus when they are to transmit logical
0. Thus, the signal on the bus will be the result of an AND operation on all bits
currently transmitted, and a device transmitting 0 will dominate over one transmitting
1.

2.3 Bus events: START and STOP conditions
In order to either start or stop a transmission, START and STOP conditions are
issued. These conditions are defined as:

• START: The data line is driven low while by the master the clock line is high. Then
the master drives the clock line low.

• STOP: The clock line is released (driven high), and then the master releases the
data line.

The start condition for a TWI device may in some cases be defined by the master
driving the data line low. The master will then drive the clock line low, independent the
definition of the start condition. Whatever is the case, these transitions will generate a
START condition.

2.4 Acknowledgement
Whenever the master is transferring data to a slave, every byte sent has to be
acknowledged by the slave. This is done by pulling the data line low after each byte

 AVR32107

 3

32011A-AVR-04/06

transmission. If the slave acknowledges the data, this is read as ACK (acknowledge)
by the master. But if the slave fails to acknowledge, for some reason or another, the
line is not pulled down and is read as NACK (not acknowledged) from the master's
point of view.

2.5 Transfer format
Data is transferred MSB first, and each character is 8 bit long. There is no parity
check, but every character must be followed by an acknowledgement. The data line
(TWD) must remain stable while the clock line (TWCK) is high to ensure data
consistency. The exceptions from this are the START condition and STOP condition.
Every transmission is initiated by a START condition. When the master wants to end
the transmission, a STOP condition is transmitted. Repeated START conditions can
be used if the master wishes to address other devices without risking losing the bus
to another master.

2.6 Transmitting data
As TWI is half duplex, data can be written from the master to the slave or vice versa.
These two operations have a lot in common, but there are also some differences.
These two operations are described in this chapter.

2.6.1 Transmission initialization

To initiate a TWI transfer, a master must initiate a START condition. After the master
initiates a START condition, it sends a 7-bit slave address. The 8th bit indicates the
transfer direction (write or read). Read is logical 1, while write is 0. After the first byte,
the master will release the data line, allowing a slave to drive it low. If a device on the
bus recognizes its own address, it will pull down the bus on the following cycle, giving
the master an ACK. In Figure 2.1 a master tries to access a device with address (id)
0x73 with a read operation and the slave acknowledges the request.

The Figure 2.1 shows how data is read on the TWI bus. When the clock is high, the
data line must be stable and no transitions may be made. If such transitions do
happen, unspecified behavior may occur.

Figure 2.1: Transfer initialization

TWD

TWCK

START
CONDITION

1 1 1

0 0

1 1

THE TWI MASTER INITIATES THE
TRANSMISSION BY SENDING THE ADDRESS

(0x73) FOLLOWED BY A READ COMMAND

0

1

ACK

When a slave has been accessed, data is transmitted according to the read/write
instruction in the initialization phase.

4 AVR32107
32011A-AVR-04/06

2.6.2 Read request

Before reading data from the slave device, a command may be given. This command
can either be 0, 1, 2 or 3 bytes long. Each sequential command is followed by an
acknowledgement by the slave in the same manner as in the initialization of the
transfer. This command is device specific and may sometimes be referred to as an
address for some devices.

After the command sequence of a transmission, the slave device is responsible for
the data line and drives it. The master is still responsible for driving the clock line. As
the master is responsible for driving the clock line, no acknowledge bit is passed after
a byte transfer. The most significant bit is always transmitted first. The slave will not
change the data line while the clock is high. This is extremely important, as this may
generate a START or STOP condition.

Figure 2.2: Command sequence

TWD

TWCK

1

0

1

0 0

1 1

MASTER SENDS
COMMAND 0xA7

0

1

ACK

A complete read sequence is found in Figure 2.2. The master tries to contact a node
with address 0x53 with a read instruction. The slave responds by acknowledging this.
Then the slave puts out 0x2A as an answer to that request. In turn, the master
acknowledges this and sends out a STOP condition, finalizing the transfer.

Figure 2.2: A complete read sequence (without command sequence)

TWD

TWCK

M
SB

LS
B

AC
K

M
SB

LS
B

AC
K

START STOP

The slave resonds with 0x2A
The master issues a read request

to device 0x53
From

master
From
slave

2.6.3 Write request

If a write request is made to a slave during initialization, the master is responsible for
driving the data line and feeding the slave with bytes. After each transmission of a
byte, the slave must acknowledge the byte sent. This is done in the same matter as
acknowledging a transfer request, described in chapter 2.4.1.

The transmission ends when the transmitter stops sending, or if the transmitter does
not receive an ACK for the transmitted character. The master will then set a STOP
condition on the bus, releasing it, or initiate a new session by sending another START
condition.

 AVR32107

 5

32011A-AVR-04/06

Figure 2.3: A write operation

TWD

TWCK

M
SB

LS
B

AC
K

M
SB

LS
B

AC
K

START STOP

The master writes 0x22 to the slave
The master issues a write request

to device 0x4B
From
slave

From
slave

2.7 More than one master - arbitration
Only one master can be in control of the communication on the bus at any time. No
other device will interfere with an ongoing transmission. If the bus is in use and
another master starts driving the bus lines, hazardous behavior may occur. The
master currently in control is providing the clock signal on the bus.

However, if two masters initiate a START condition simultaneously, they will both start
transmitting clock and data signal. To avoid corruption of data, one of them has to
switch to idle or slave mode. This problem is solved through arbitration; both (or all)
masters start transmitting, but the moment one of them discovers that the TWD line is
driven by some other master, it will stop transmitting, and go to idle or slave mode.
The mode is dependent of the features supported by the TWI master. A consequence
of the wired-AND logic is that if 1 and 0 is transmitted on a bus wire simultaneously,
the bus will read 0. Every master transmitting data will read the value on the bus to
see if they really are driving the bus. As soon as a device tries to transmit 1, but the
bus reads 0, it will know that some other device is transmitting, and switch to slave or
idle mode.

The result is that the master sending the lowest address character will win the bus (if
two or more masters are trying to address the same device, the arbitration will
continue in the direction bit, and possibly the data bits). The AVR32 microcontroller is
unable to enter slave mode. Thus, when it loses the bus, it will enter idle mode until a
STOP condition is transmitted on the bus, signaling that the master currently in
control of the bus is done. When a STOP condition is detected, and the AVR32 wants
to communicate on the bus, a START condition is immediately transmitted.

2.8 Usage
Before any data can be sent on the TWI bus, it must first be initialized. Then a
specific device can be probed to check whether it is responding or not. It is then also
possible to receive or send data. The functions for these operations are described in
chapter 2.6.1.

Baudrate(s) for your TWI slave is described in the appropriate datasheet for your
device. It is important to select the correct baudrate, as it is the master's responsibility
to drive the clock line.

3 Package information
Included with the application note is a driver package. This package contains drivers,
example code and documentation.

6 AVR32107
32011A-AVR-04/06

3.1 Drivers
Drivers are available in the package. These drivers are written to be independent of a
specific compiler and are successfully tested on gcc and IAR Embedded Workbench.

3.2 Examples
Examples are available from the corresponding driver package. All functionality is
divided into libraries and an example that utilizes the library.

3.3 Documentation
Function specific documentation is available in the package. Refer to readme.html in
the source code directory.

4 Further reading
The AVR32 TWI also has support for Direct Memory Access (DMA) and interrupt-
driven communication. These two concepts are described in two other Application
notes, namely AVR32108 title and AVR32109 title respectively.

32011A-AVR-04/06

Disclaimer
Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2006. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, AVR®, and AVR Studio® are
the registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 Functional description
	2.1 Electrical interconnection
	2.2 Wired AND
	2.3 Bus events: START and STOP conditions
	2.4 Acknowledgement
	2.5 Transfer format
	2.6 Transmitting data
	2.6.1 Transmission initialization
	2.6.2 Read request
	2.6.3 Write request

	2.7 More than one master - arbitration
	2.8 Usage

	3 Package information
	3.1 Drivers
	3.2 Examples
	3.3 Documentation

	4 Further reading

